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The general problem of rising and falling Regge trajectories is investigated in a fully relativistic model
in which an arbitrary two-particle interaction is unitarized by summing generalized ladder diagrams. The
trajectories are extracted from the infinite sum by an extension of the technique previously applied to
ladder diagrams in an ordinary scalar field theory. Any basic interaction which vanishes faster than any
power of the momentum transfer t generates infinitely falling trajectories. A physical explanation of falling
trajectories is given in terms of the scattering of infinitely composite particles where the standard single-
particle-exchange interaction is modihed by exponentially damped form factors. A variety of models for
rising trajectories is constructed, all of which violate either the Ja6e bound on form factors or the Froissart
bound on forward scattering amplitudes. If the interaction is single-particle exchange with form factors
e && '&~, the trajectory has Ren —& +~ as s —+~ if p)1, but it is not of narrow width. Energy-dependent
interactions based on Regge-pole exchange, energy-dependent coupling constants, or direct form factors
yield rising trajectories, but not narrow widths. Moreover, the energy dependence must be such that the
Froissart bound appears to be grossly violated.

I. INTRODUCTION

'UCH of the recent theoretical work on various
~ ~ aspects of Regge theory has incorporated the

concept of infinitely rising, and infinitely fa,lling, Regge
trajectories. Moreover, the trajectories almost uni-
versally are assumed to be linear with small corrections.
In particular, the imaginary part is a,ssumed to be small
so that narrow-width resonances appear whenever Ren
crosses the appropriate integer or half integer. An ex-
amination of the Chew-Frautschi plot for baryons lends
credence to the belief that Regge trajectories are in-
finitely rising and suggests that they are linear func-
tions of s, the square of the energy. ' There is less
evidence for rising boson trajectories. The idea that
trajectories are infinitely falling functions as s ~ —~
is based more upon theoretical considerations' than
experimental evidence, but is supported by the absence
of any curva ture in Regge-trajectory fits to scattering
data at large momentum transfer. 4 Since rising tra, —

jectories lie at the heart of so many investigations,
the concept should be examined in detail. Mandelstam'
and Epstein and Raus' have discussed the problem in
a dispersion-theoretic framework and conclude that
the rising behavior comes from subtraction constants
in the dispersion relations for the trajectory function.
These subtraction constants are difficult to evaluate.
In fact, there is a large class of equivalent theories
which assume linear, infinitely rising trajectories, and
then impose unitarity and crossing to constrain the
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parameters of the trajectory function. ' Although this
approach to Regge theory may be the correct one, we
do not pursue it here.

Rather than attempt to find self-consistent rising
trajectories, we explore the question of whether it is
possible to construct dynamical models that generate
such trajectories. Our point of view is that if the ex-
tension of Regge poles to the relativistic domain is
ever to become more than a phenomenological tool, it
is necessary to understand the basic dynamical mecha-
nism responsible for the experimentally observed tra-
jectories in the same way that the origin of Regge poles
in potential theory is understood. Unfortunately, Regge
trajectories in potential theory rapidly turn over. The
leading trajectory for a single Yukawa potential
starts at n = —1 for s= —~ and moves to the right of
Re+= —

~~at threshold. Re+ continues to increase above
threshold and, for strong enough coupliogs, may cross
several positive integers. Ultimately the centrifugal
barrier overcomes the a,ttractive force, and Rem de-
creases rapidly to n= —1. A very similar behavior is
found in the standard relativistic models of Regge tra-
jectories and thus the explanation for the rising and
falling behavior does not lie in the simple extension to
relativistic kinematics. ' '

Although there are a number of speculations about
rising trajectories, only two basic models have been in-
vestigated in detail. In one model, the trajectory is
supported by the opening of new channels as the energy
is increased. "The particles in these new channels have
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increasing spin so that the orbital angular momentum
of the internal particles can be low, and there is no
problem with a large, repulsive, centrifugal barrier.
The sequence of particles with increasing spin is, in
turn, described by a rising Regge trajectory. Although
this bootstrap scheme insists that multichannel eBects
are dominant, in the absence of exact solutions, the
model becomes another approach constraining the
parameters of trajectories that are a Priori assumed to
be rising. The other model keeps the spins of the
internal pa, rticles small and allows their orbital angular
momentum to increa, se. In order to overcome the
angular momentum barrier in such a model, it is
necessary that the potential be energy dependent.
Trivedi" and Tiktopoulos" have explored models of
this type in potential theory and found that rising
trajectories can indeed be generated. There is some
question as to whether the potential-theory approxima-
tion is valid in the asymptotic energy region of interest.

There has been little work done on the problem of
infinitely falling trajectories beyond the conjecture of
Mandelstam" that it is related to the infinitely com-
posite nature of the scattering particles. Aaron and
Teplitz'4 have shown that if one of the particles in a
scattering process is treated as a bound state, the
position of n(—~) is shifted to n( —~)= —3 from its
value n( —~)= —1 if all the particles are elementary.
However, there has been no work on generating
Q —00 = —00,

In this paper we explore several different fully rela-
tivistic models for generating rising and falling Regge
trajectories. We use a recently developed formulation
of high-energy perturbation theory' or, equivalently,
the Bethe-Salpeter equation, as a method of unitarizing
a variety of phenomenological interactions which simu-
late plausible dynamical effects. This method is particu-
larly useful, since it enables us to calculate trajectories
above threshold. To understand falling trajectories, we
combine the following observations: (i) A Born ap-
proximation, or Bethe-Salpeter kernel, which vanishes
like ( t) ~ as 1 —+ —~—, where 1 is themomentum trans-
fer, produces trajectories which have rr( oo) =-
(ii) At least one model of infinitely composite particles
in field theory leads to form factors which decrease
faster than any power of —t." Together, these two
points suggest that the in6nitely composite nature of
the internal particles requires that the single-particle-
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exchange kernel of the ladder approximation should be
modified by the introduction of exponentially damped
form factors. Upon unitarization, this modiled kernel
will produce infinitely falling trajectories. In fact, we
investigate a variety of kernels which have the asymp-
totic form (—t) se 'r & "s and are independent of s. Some
a,re just form-factor modifications of single-particle
exchange, and others do not have the particle-exchange
pole. In every case, since n( —~) is expected to be
in6nite, weak-coupling techniques cannot be used to
investigate the trajectories. Our reformulation of per-
turbation theory is ideal for investigating the basic
question of whether theories which have n ( oo—)= —~
can have trajectories which reach positive values of o.

in the region of s=0. The answer is that, in all models
with exponentially damped. kernels, the trajectories do
reach 0&0 for reasonable values of the coupling con-
stant even though n —& —~ in the weak-coupling limit.
From these investigations, we conclude that the dy-
namics of infinitely falling trajectories is relatively
simple compared to that required to genera, te trajec-
tories with Re(+ ~ ) =+~ .

Above threshold we find that almost all of the tra-
jectories generated by energy-independent kernels
which have n( —~)=—~ turn over, just as they do
for pure single-particle exchange where rr( ~)=——1.
This is not surprising since such kernels do not reQect
forces which are capable of overcoming the angular mo-
mentum barrier. The exceptions to this statement are
kernels of the form given above with P) 1. Such kernels
produce Regge trajectories which have Ren(+ ~ )= ~,
although asymptotically Imn&Reo. so that they are
not of narrow width. Over any finite region of positive
s, however, it is possible to obtain trajectories which
have Rex&Imo. . The possibility of obtaining trajec-
tories with Rem~~, although the potential does not
increase in strength, depends on the fact that the
angular momentum barrier is proportional to e'. If
Q. =Re", the real part of the potential is attractive if
0) ~m-. We investigate in detail the trajectories arising
from the simple kernel e+&' and obtain trajectories
which rise smoothly from —~ to +~. Among the
more interesting results is the fact that the trajectory
is asymptoticallv linear. This is not in any way assumed
as input to the calculation. As a form factor, e+&'

violates the 7affe bound. 'r However, Khuriis and Jones
and Teplitz" have shown that infinitely rising trajec-
tories themselves require abandonment of certain
commonly held truths, so we feel that violation of the
Jaffe bound is not surprising. Form factors such as
e &l '&"' which obey the Jaffe bound yield tra-
jectories which turn over above threshold and have
Reir (+ ao ) = —oo .

"A. M. Ja8e, Phys. Rev. Letters 17, 661 (1966); A. Martin,
Xuovo Cimento 37, 671 (1965). We are indebted to Professor
L. Durand for bringing to our attention the question of the bound
on form factors.'
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In addition to s-independent interactions, we investi-
gate a number of other models which might yield rising
trajectories. The relativistic analog of the energy-
dependent potential of Trivedi" and Tiktopoulos" is
an energy-independent kernel. If we use a single Regge-
pole amplitude with an exponentially damped residue
function P(t) = e&', we find trajectories which look. very
much like those arising from a pure exponential kernel,
even to the ratio of Rex to Imn. Xn other words, simple
Regge-pole exchange does not generate narrow-width
trajectories. In another model that we discuss, the basic
interaction has the form s&e && "~ and corresponds to
an energy-dependent coupling constant. The trajec-
tories turn over for P(1 unless q) 1. However, if ri) 1,
the sum of generalized ladder diagrams obtained by
iteration of this interaction appears to violate the
Froissart bound" on scattering amplitudes; in the limit
s —+~ the Sth term in the sum grows like s (~"+'.
While we are willing to contemplate violation of the
Jaffe bound for purely hadronic form factors in the
presence of infinitely rising trajectories, we are reluctant
to tamper with the Froissart bound. An alternate model
that introduces a strong energy dependence into the
basic interaction includes the effect of direct form
factors. As s —+~, the Bethe-Salpeter equation samples
a kinematic region in which the particles are far off
their mass shell in the timelike direction. We choose
the direct form factors proportional to e &«"~, where
the mass shell is defined by q'= —p'. In the limit
q' —& —ae g'= (k+ ',is'")' -where k is the loop mornen-
tum, the direct form factors are equivalent to expo-
nentially growing or damped coupling constants depend-
ing on whether P) s' or P(—', . If the direct form factors
violate the Jaffe bound, '~ the trajectories rise; but the
Froissart bound" is violated, and we reject such
theories. U the Jaffe bound is observed, the trajectories
turn over at least as fast as if we did not include direct
form factors.

We investigate the effect of a superposition of two-
particle thresholds of increasing mass (but zero spin).
If such a sequence of thresholds converges in the sense
that the coupling to high-mass channels decreases in
order that the total contribution to a unitarity integral
be Qnite, the resulting trajectories again turn over.
We also investigate a simple model incorporating some
aspects of three-particle phase space; again the tra-
jectories turn over. The superposition model and the
three-particle phase-space model do have the effect
of making Imn ~ 0 at threshold with zero slope rather
than with the 6nite or infinite slope that occurs with a
single two-particle threshold. In general, these models
decrease the imaginary part of the trajectory function
relative to the real part. We cannot, at this time, in-
vestigate true multiparticle intermediate states or inter-

"M. Froissart, Phys. Rev. 123, 1053 (1961);A. Martin, Xuovo
Cimento 42, 930 (1966); 44, 1219 (1966). This bound says that
0.~g(Cln's. Using the optical theorem, we obtain the bound
& (&,0) &C's ln's.

mediate states involving particles with high spin. Our
conclusion is that among the models we have considered,
only those with Born approximations which are propor-
tional to e+&' yield rising trajectories, and these tra-
jectories have Imo.)Ren asymptotically.

In Sec. II, we discuss the technical aspects of the class
of models under investigation. In particular, we show
that our working equation, previously derived only
for single elementary-particle exchange, is valid for a
large class of kernels. We then discuss the approxima-
tions involved in solving the equation. We analyze,
in particular, the effect of using the Blankenbecler-
Sugar approximation for the two-particle Green's func-
tion and the separable approximation for the kernel.
Section III contains the results on falling trajectories
as well as a discussion of the trajectories in the region
above threshold in models with simple energy-inde-
pendent exponentially damped kernels. An analytic, as
opposed to numerical, treatment is given for the asymp-
totic behavior of the trajectory generated by the
kernel e+&&. Section IV is concerned with the other
models that we investigated, including energy-depend-
ent kernels and coupled thresholds. The final section
contains our conclusions, and two appendices discuss
the problems of higher corrections to the separable
approximation for arbitrary kernels and the construc-
tion of a very approximate three-particle Green's
function.

II. FORMALISM OF GENERALIZED KERNELS

Our investigation of rising and falling trajectories
proceeds by first assuming a Born approximation to the
scattering amplitude, or a kernel to the Bether-Salpeter
equation. This amplitude is then used in an integral
equation to determine the Regge trajectories. The
integral equation we use is a generalization of the
equation developed, in I to locate the Regge trajectories
in a theory based on single-particle exchange. In that
case the equation was shown to be mathematically
equivalent to the Bethe-Salpeter equation. ' Since our
approach is unconventional, we derive our working
equation again for arbitrary interactions. The deriva-
tion closely parallels Polkinghorne's complete summa-
tion of ladder diagrams in perturbation theory. ' Let
E(s,r; qt', qs'; qs', q4')=K(r) be an arbitrary o8-mass-
shell scattering amplitude for two spinless particles
with initial four-momenta q& and q2 and final momenta
q3 and q4. The total center-of-mass energy is s'" and
z= —t, where t is the momentum transfer. For single-
particle exchange without form factors, E(r) = (X'+ r) '.
We derive our equation in a singularity-free region so
that all four-vectors are rotated to a Euclidean metric.

The 37th approximation to the scattering amplitude
is obtained by iterating K(r) 1V times with two-particle
intermediate states described by Feynman propagators.
The result is a generalized /th-order ladder diagram.

"A. R. Swift and R. W. Tucker, Phys. Rev. D 2, 397 (1970).
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The loop integrations are carried out by 6rst para-
metrizing the direct propagators by the formula

e dx,

p(x, s,z,,z2, za, z4)e '* —'z*&-"d
xd ;z(.1)

0

All kernels considered here satisfy (1).The result of the
loop integrations is a representation of the Sth-order
ladder diagram of . form

&01~N QN

rr d*' (*;) (2)

where we have suppressed the dependence on all Feyn-
man parameters except those conjugate to the momen-
tum transfer. Qir and Air are functions of the Feynman
parameters which characterized the ladder diagram
and g=xlx2- x~. Next we Mellin-transform the
amplitude with respect to v to obtain

Air(s, n) = r 'A~(s, r)dr
00 QN

g dx, p(x;)x,
o

and then using the assumption that K(r) has a Laplace
transform in z and qi2,

K(s,r; gi, gn ', g3,g4 )

and (4), we 6nd that Air(s, n) has an Nth-order pole at
n= —L—1. For kernels which vanish faster than any
power, L= . However, such kernels are the limits of
functions with finite L.

Standard perturbation-theory techniques are applied
to (3) to isolate the pole at n= I. 1—. Th—e result, when
summed over E, becomes

r(—)CG(, )j'
A(s,n) =

n+I.+1—P (n,s)

which for L=O is just Polkinghorne s expression for a
complete sum of ladder diagrams. ' The poles of A (s,n)
are the zeros of the denominator of (5). Following the
method in I, we write F (n, s) in the form

F( ns)

F(u,s) ='..
1+F(n,s)/(n+1+1.)

The poles of A (s,n) are the poles of F(n,s), where

ir p(x;)
F(-,s)= Z (-G). II

N=l '=i xP i

Xg.&'ig.&"i . (6)
a+2

Next, comparing (2) and (6), we note that the 1Vth

term in this representation for F(n,s) is that of a Feyn-
man ladder diagram with both ends contracted in a
space of 2n+4 dimensions with an n-dependent interac-
tion. The interaction kernel is just

The second condition on the kernel E is that

hm p(x,s; zi, z2, za, z4) =x gl. (s)zi,z2)gz(s, za, z4) q (4)

K.(r) = dz;dx x p(x,s,zi, zm, z, ,z4)e ~*"-&" (7).

where ql', q2' are the squares of the momenta of the
particles to the left of E in the ladder diagram, and q32,

q4' refer to the particles to the right of E. The limit in
(4) is equivalent to the statement that K —+ r ' ~giga
as z~ 00. This factorization property excludes dia-
grams such as the cross and other nonplanar kernels.
If the right-hand side of (4) is replaced by a sum of
factorized terms, the derivation is still valid. Using (3)

K(r) and K (r) have the same dependence on s and
qi2. To complete the derivation of our final integral
equation, we write F(n,s) as a momentum-space in-

tegral of an amplitude V(n, s,p) in a (2n+4)-dimensional
space. The relation between F and V is given in I,
except that a factor gl, ((p+iE)2, (p—iE)') is included
to reQect the nature of the contracted line on the end
of F(n,s). The infinite sum in (6) is replaced by an
integral equation for V,

~(-;,p) =g.((p+'E), (p 'E))-
G' d'~k K~(s (p —k)' (p+iE)' (p iE)' (k+i—E)' (k —iE)')V(n s k)

8
m2 C(k+iE)'+p'jC(k —iE)'+p'j

00 00

xa y ~'e ~~dy,I(- ) ~

K (s,r,q,') = — y 'K(s, r+y, g,')dy, (9)
I'( —n) 0

vrhere s=4E2. We have inserted all factors left out constitute our basic equations. This representation for
heretofore. Equation (8), together with K (r) is obtained from (7) by writing
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and using (1) to carry out the x integration. Our in-
vestigation is based on ending the poles of the solutions
of (8) for a variety of interactions. Although the choice
of functional form for E(r) is arbitrary, the n and r
dependences of E (r) are strongly correlated. It is not
possible to choose E (r) to be an arbitrary function of
n and v, but rather we must perform the integral trans-
form in (9) as an intermediate step.

The concept of a continuous-dimensional integral
equation was discussed in I in detail. Moreover, (8) has
been shown to be mathematically equivalent to the
Bethe-Sa, lpeter equation, at lea,st for single-particle
exchange. " Integration in 2n+4 dimensions is carried
out by setting 2++4 equal to an arbitrary positive in-

teger and then, upon completion of the integration,
allowing it to become continuous and even complex.
The rule that 2n+4 is an integer in all intermediate
steps in a calculation can be used to convert (8) into
a configuration space differential equation.

If in the limit x ~ 0, p(x) in (1) is proportional to a,

sum of 3f separable terms, the derivation can be
carried out by using M&&M matrices for F(a,s) and
F(n,s) V(n, s.,p) becomes an M-component column
vector. Each component of V satis6es an uncoupled
integral equation with a kernel identical to that in

(8), with only the inhomogeneous term depending on
M. Thus the Regge trajectories in this case are also
given by (8). Furthermore, since (8) does not depend
explicitly on J, we can let L= ~ if necessary. Thus,
Eq. (8) with E (t) defined by (9) is valid for those
kernels which (a) have a Laplace transform in the
momentum transfer variable and (b) have the asymp-
totic form r 'P;gz'g~', gz and g~ depend on the
incident and final momentum variables, respectively,
and L can be infinite.

Before discussing the solution of (8), we mention our
reasons for preferring this equation to either the partial-
wave Bethe-Salpeter equation or some other more con-
ventional approach. We find the Mellin-like transform
in (9) easier to analyze than a partial-wave projection
with Legendre functions. In particular, for many of
the kernels that we discuss, E (r) has a, simple de-
pendence on the invariant r. C.'ompare single-particle
exchange where E (r)=I'(ca+1)/P. '+r) +' with the
partial-wave kernel Q (X)/2pq, where X= [(Po—qo)'
+p2+q'+p')/2pq. E (r) is calculated from E(r) di-
rectly, and it can be continued into the complex n plane
without further manipulation. The apparent pole at
n=o in the integral is canceled by the zero from
[I'(—n)) '. A separable approximation to E ((p—k)')
leads to Regge trajectories that compare quite well
with trajectories obtained by exact methods. Higher-

order corrections to the separable approximation re-
quire derivatives of K (r) with respect to r. Given a
computing routine for E (r), we find it trivial to
evalua, te these derivatives with the relation

8—E (r) = E-+g(r),
8'p

(10)

which follows from differentiating (9) and then inte-
grating by parts. The Anal and most important reason
for preferring this approach is that it enables us to
calculate trajectories above the elastic threshold in a
reliable fashion.

As mentioned above, to solve (8) we resort to approxi-
mating the kernel by one of hnite rank22:

E ((p—k)')=K (p')K (k')/E (0). (11)
When either Po or k' is small, this approximation be-
comes exact. It also retains the large p' and k' properties
of E ((p—k)') necessary for proper convergence of the
integrals. For this approximation to be valid, the
dominant contribution to the integral in (8) must come
from the region of small k,'. With exponentially damped
kernels, this should be an excellent approximation; it
was quite good even for single-particle exchange. ' If
(11) is used in (8), we find that, in the absence of any
q, o dependence in E(r), the poles of V(n, s,p) are given
by the solutions of

2+2
dkp

Qm I'(n+-,')E (0)
00 koa+2dk[E (k2+k 2) )2

X (12)
[(ko+iE)'+k'+ p,')[(ko—iE)'+k'+p')

where we have taken advantage of the fact that the
angular part of the integral in 2a+3 dimensions can be
performed to give a factor"

2~a+3/2

dQ=
I'(~+o)

Solution of this deceptively simple transcendental equa-
tion yields Regge trajectories which can be continued
above threshold As discu. ssed in I, (12) is to be solved
by varying n to obtain the desired value of O'. In
Appendix A, we treat the general problem of deter-
mining higher-order corrections to the first-rank ap-
proximation. If (11) is replaced by the second-rank
approximation developed in Appendix A, the trajec-
tories are the solutions of

det(1 —D) =0.
The matrix D is given by

[E~+.2(0)Ioo Enyo(0)Ior )/H —[E(0)IoP —Ea~y(0)Ioo )/H 2Ioi /Eyr(0)
D= [E~+o(0)IoP—E~q-x(0)In )/H [E~(0)Iu'—K~~z(0)IoP)/H 2Iu'/E~~x(0)

[K~~2(0)Iop' —K~+g(0)Iu')/H [E~(0)Iu' —E~„g(0)Iop')/H 2Iu'/K~+g(0) )
~ M. M. Levy, Phys. Rev. 98, 1470 (1955).

(14)
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where a=K.(O)E.+, (O) —LK.„,(0)]2 a.nd

2G'
I j=-

+2r I'(n+-2, )
kp&'dkp

k2 +2dk E.+.(k'+ko')K +-(k'+ko')
X

P(k, +iE)2+k2+p2)L(k, —iE)2+k2+/21

x
+G (k,o)—,(15)

2Eg, k' —q'

where G(k,ko) contains the other factors in the inte-
grand of (12) q'=E' //' and E/, '——k'+—p'. We drop
the integral in (15).This is, of course, just the Blanl en-
becler-Sugar23 approximation. The two-particle thresh-
old effects are contained in the second term. Since our
procedure of unitarizing the input kernel imposes elastic
unitarity only, it is consistent to neglect the higher
threshold effects which are removed by this approxima-
tion. As a numerical approximation, the Blankenbecler-
Sugar approximation" turns out to be quite adequate
for our purposes. In Fig. 1 below we compare the
solutions of

(/2r)G2 " k2~2dk LK (k') j'
(16)

P (&+2 )K (0) Lk2++2$1/2(k2 q2)

with those of (12) for an exponentially damped kernel.
The agreement between the two solutions is qualitative
below threshold but becomes quantitatively excellent
above threshold. The integral in (15) proves to be
small compared to the second term. AVe also present

"R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).

If the scattering particles have equal mass, then the
third row and column of D are zero. For a given n there
will be three values of G-'which satisfy (13). Higher-
order approximations will have more solutions. These
extra solutions are just the secondary trajectories in the
theory. A full discussion of them is reserved for a
future publication.

In general, we use (12), but we compare the solutions
of (12) with those of (13) in one case to check the
validity of the approximation. Although (12) is a

simple transcendental equation, it must be attacked
numerically. As it stands it contains a double integral.
A search for the correct value of +, given the desired
6', particularly above threshold where both Ren and
Imo. must be varied, requires that the integral must
be performed a large number of times in order to map
out a complete trajectory. Thus, we make still another
approximation in (12). Restricting ourselves to equal
masses, we write the integral over kp in the form

dk, LG.(k,k,)—G.(k,o)j
-- Lko'+(&+& )'jL(ko'+ (&—& )'j

in Fig. 1 solutions of (13) in the Blankenbecler-Sugar
approximation. Given that all three solutions have
n= —~ in the weak-coupling 1 mit and the s —+ —~
limit, the agreement among the solutions is satisfactory
and gives us confidence in our method.

The analytic continuation of any of these equations
above threshoM is straightforward. Since the two-
particle threshold is contained in the second term of
(15), the analytic continuation of (16) can be used for
(12) also. Wherever it occurs, q' has a +io attached to
it. Thus, above threshold we have the standard result

p—+i7r 8 (k' —q'),
k' —q' —ie k' —q'

where P denotes a principal-value integral which is
easily carried out numerically. In Secs. III and IV we
use (16) to investigate a, wide variety of kernels which
bear on the problem of rising and falling trajectories.

III. FALLING TRAJECTORIES AND ENERGY-
INDEPENDENT INTERACTIONS

An infinitely falling trajectory is one which has
n(s= —oo) = —oo. Any kernel' IC(r) which vanishes
faster than any power as ~~~ v ill produce such a
falling trajectory, provided that E(7) does not depend
strongly on s. The connection between the large-7
behavior of K(r) and the asymptotic position of the
leading Regge pole can be obtained either from the full
scattering amplitude A (s,r) or from the integral equa-
tion for V(n, s,p). First, in the limit s —+ —~, A(s, r),
which is equal to an infinite sum of generalized ladder
diagrams, becomes equal to the first Born approxima-
tion, provided that

lim E(s,r,qr2)(3IIs' ',
8~00

where o)0 and 3f is independent . of s. If E(r) depends
on the square of the direct four-momenta q, we assume
the dependence is such that K(7) vanishes in the limit

q, 2 —++~ or, in other words, when the particles are
far off the mass shell (q,2= —//2). The result for the
asymptotic form of A (s,r) is established, among other
ways, by applving the d-line analysis of Hallidav'4 to
the generalized ladder diagrams. If E (r) is independent
of s, a ladder diagram with E rungs vanishes like
s ~+'; each two-particle intermediate state contributes
a fat„-tor of s ' to the asymptotic behavior. Thus, if
2 (s,r) is replaced by the first Born approximation, we

find, in the limit s —+ —~,

where K(r) -+ (r) ' zgiga. On the other hand, an
alternate representation of A(s, r) is in terms of the

24 I. B. Halliday, Nuovo Cimento 30, 177 (1963); G. Tikto-
poulos, Phys. Rev. 131, 480 (1963).
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FIG. 1.Real and imaginary parts of the trajectories plotted as a
function of s. The full curve corresponds to the solution obtained
from the first-rank approximation to the kernel I'21), single-
particle exchange with a modified-Bessel-function form factor.
It has been calculated with the Slankenbecler-Sugar approxima-
tion (16) and normalized so that n( —4) =0.0. The dashed curve
represents the trajectory obtained by using the second-rank
approximation to the kernel with the same coupling constant.
The isolated points are calculated from the full double integral
(12). Threshold is at s=4.

is at ~a~ = ~. Thus, (18) is satisfied only if the tra-
jectory is infinitely falhng as s —+ —~. Note that
K (r)=1'(rr+1)!()12+r) +'for single-particle exchange,
and (18) is satisfied if a ~ —1 as s -+ —m.

Having established the mathematical condition for
infinitely falling trajectories within the framework of
our model, we ask the physical question of why K(r)
should vanish faster than any power of z. Clearly the
exchange of an elementary particle by elementary
particles in a conventional field theory does not lead
to this behavior. On the other hand, strongly interacting
particles are believed to be composite —infinitely com-
posite in fact. The structure of particles is rejected in
their form factors. "Hence, one method of taking into
account the composite nature of particles is to use a
phenomenological field theory in which Feynman dia-
grams describe scattering processes, but each vertex
has a form factor associated with each oQ-mass-shell
line. Presumably these form factors represent a large
class of vertex corrections to elementary-particle ex-
change and, therefore, should be used carefully to avoid
serious double counting problems. The simplest model
of two-particle scattering in such a phenomenological
field theory is patterned on existing field-theory models
of Regge poles but incorporates the structure of the
scattering particles. It replaces the standard single-
particle-exchange interaction by

A comparison of (17) and (18) shows that rr( —oo)
I. 1. Hence, —for —L ~ro, n( —~)= —oo. The

leading pole has a constant residue if glgg is inde-
pendent of s.

The alternative argument for the re1ationship be-
tween n( ~) a—nd the asymptotic behavior of K(r)
uses the integral equation (8). If K(2.) vanishes faster
than any power of r, then the integral representation of
K (r) converges for all Ren(0, and K (r) has no n
singularities in that region. If Fredholm theory is
applied to (8), the poles of U(a, s,p) are zeros of the
Fredholm denominator. In the limit s —+ —~ for finite
0., the Fredholm denominator approaches its first term
for the saine reason that A(s, r) approaches the first
Born approximation. The propagators for the two-
particle intermediate state appears X times in the Fth
term of the Fredholm denominator function. Thus, in
the limit s ~ —oo, the poles of U(n, s,p) are given by
the solutions of

(18')
(JP+/22) 1/2 ($2 ~2)

Equation (18') resembles (16), but is not useful for
a)0 since it diverges at n=0. The integral in (18')
converges for negative values of n and s=4E'&4@2.
The apparent singularity at n= ——,

' is canceled by
LI'(n+2)] '. In the limits ~ —oo, the integral vanishes
unless o approaches a singularity, which in this case

Vfe do not include form factors on the direct as well as
exchange lines, since they would constitute an energy-
dependent modification of kernel. We discuss them in
Sec. IV.

At least one model" of infinitely composite particles
leads to form factors which have F(2.) e &', p&-'„as
2. -+ oo. The bound on p comes from the theory and
is consistent with the bound on form factors established
by Jaffe from field theory and by Martin from the
requirement that certain dispersion relations exist. '~

All such form factors lead to infinitely falling trajec-
tories, or at least trajectories which have n( —~ ) = —ro .
The question remains as to whether trajectories which
start at n= —~ can produce bound states or resonances
with Reo.)0 for positive values of s, In Fig. 1 we display
trajectories generated by the form factor

F( ) t () 2+~)l/2X (~(ps+ )1/2))1/2 (20)

where X„(z) is a modified Bessel function of order r.
This form factor has a branch point at v.= —X~, but is
respectable in the sense that it has appeared in the
literature. "Moreover, it enables us to carry out the
integral in (9). When we use (20) as a direct form
factor, we choose P' to correspond to a two-particle

~' M. M. Islam, Nuovo Cimento 48, 251 (1967).
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F(r) =expL y(X +r—)e—$(X +r)s". (22)

If 8=~ and p=s, this form is (20), in the limit as r
becomes large. The transform necessary to calculate
K (r) cannot be performed analytically for arbitrary
8 and P. Rather we approximate K (r) by its asymp-

2.0-

branch point. The K (r) corresponding to (20) isss

X.„(~()t'+r)'I')
K-(r) = (sv)

(gs+r) (I+1)ls

The direct form factors are suppressed since they are
unaGected by the integral transform. The curves in
Fig. 1 are solutions of (16).To test the approximations
involved in deriving (16), we also present solutions of
(13), the second-rank approximation to the kernel, and

(12), the full double integral. The trajectories do reach
n=0, but they also turn over above threshold. It is
apparent that a trajectory which has n( —m)= —m

need not have Rerr(+ oo ) =+ a&.

Having established that exponentially damped,
energy-dependent kernels yield infinitely falling trajec-
tories, we next explore whether it is possible to construct
basic interactions that generate rising trajectories. Ke
relax the requirement that the interaction have a single-
particle pole in v, since it is not obvious that single-
particle exchange is the dominant interaction in the
real world. Moreover, if the particle pole is far from the
region of integration, it should be unimportant. In eBect,
what we do is to search for an interaction that leads to
rising trajectories, leaving the physical interpretation
of the results until we are successful. Thus, we try next
a kernel of the form (19) with

0.5-

0.4-

0.3-

'd

0.2-

O.I-

0.0-
rr

r~rr
I I

I 2

FIG. 3. Full curve is the Blankenbecler-Sugar solution for the
trajectory as a function of s with the kernel X (r) =y e &'. The
dashed curve is obtained from the double integral (12) with the
same coupling constant and same value of y 0.1. The vertical
scale has been expanded relative to the previous figures to display
better the difference between the curves. Threshold is at s=4.

totic value

e—"*'(pyz )
K (r)=

pa+1—5

E (1-p)+1-6
X 1+ +" I, (23)

rpyz~

which is valid when z= X'+ r))1 and rr is small. If (23)
leads to a rising trajectory, the small n approximation
breaks down and it becomes necessary to use the exact
expression. If the trajectory turns over or remains con-
stant with small n, the approximation should be valid.

In Fig. 2 are shown trajectories for several values of
P and 8. The trajectories turn over unless P& 1.Varying
b does not eGect this conclusion. Hence, it is possible to
generate rising trajectories with an energy-independent
kernel. However, interpreted as a form factor, the
kernels violate the Jaffe bound. 'r

To check our approximations and conclusions, we
calculate a trajectory with the simple interaction

l.o-

0.0-

K(r)=e r, -
which has the exact transform

K (r)=7 e~'.

(24)

(25)

8 S 12 20

FIG. 2. Real parts of the trajectories obtained from the kernel.
(23), single-particle exchange with a s+'e &*s" form factor,
plotted as a function of s. The curves labeled 1, 2, 3, and 5 have
8=0 and P=0.25, 0.75, 1.0, and 1.3, respectively. Curve 4 has
8=1 and P=0.75. Each curve is normalized to o(—4) = —05.
Curves with P &1 turn over. Curve 4 drops rapidly in the region
s&20. Again threshold is at s =4.
"Higher Trunsceedewtal IignctiorIs, edited by A. Erdelyi

(McGraw-Hill, New York, 1953), Vol. 2, Chap. 7, p. 95.

In Fig. 3 we show trajectories obtained from (25) in

both the 3lankenbecler-Sugar approximation's (16) and
the full double integral (12). Indeed, the trajectory
rises and the agreement between the two calculations is
good. Moreover, by varying p and G', we can adjust
the slope and s=0 intercept of the trajectory over a
wide range. If K(r) in (24) is modified by the factor
ps+ r) ' so that e &''s becomes a form factor, K (r) is
proportional to an incomplete gamma function, '7

K.(.)=1(1+,v() '+.))/() '+.).+' (26)
"Ref. 26, Vol. 2, Chap. 9, p. 137.
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If we let n= Ee'~ and E=as, we find. immediately that
m= 1. If ms&1 the factor (s/n) prevents the right-hand
side of (28) from being constant. In addition, we require
that the exponential factors in (28) have constant mag-
nitude and phase. As a consequence both g and 0 are
determined by the equations

cos8[1+ln (y/4a) ]+8 sin8 =y/2a, (29a)

t.o

I

0

1+in(y/4a) = 8 cot8, (29b)

where (29a) comes from the constant magnitude re-
quirement and (29b) comes from the constant phase
requirement. When (29) is solved, we find that 8= 1.13
and a=0.40', so that the Regge trajectory has the
asymptotic form

0.6-
n = 0.49ys (0.43+i0.90), (30)

0.2-

24 S 40
I

56

where y enters through (25). This asymptotic result is
verified by actual computation of the trajectory Lsee
Fig. 4(b)]. Since 8)~~m, (30) is not a, narrow-width
trajectory. However, it is possible to make the ratio
Irnn/Ren take on almost any value in the region just
above threshold by varying 6' and p. One of the tra-

FEG. 4. {a) Full curves are the real and imaginary parts of the
trajectory with the incomplete gamma-function kernel (26).
The exchanged mass ~ =2, p =1, and the coupling is such that
o. (—4}= —0.5. The dashed curve is Re+ resulting from the ex-
ponential kernel (25) with y=1 and a coupling chosen to make
the trajectories coincide at s= —4. The curves for Imn are in-
distinguishable. The particle-exchange pole has little effect in the
asymptotic region. {b)Real and imaginary parts of the trajectories
calculated from the full exponential kernel (25) plotted as a
function of s. The full curve is normalized to o. (0) =0.5 and has
y=0.04 to make Ren(30) =1.0. ln units where nz =1, m~ =30.
This 6ctitious p trajectory yields a width

I'=2(Imo. ) (d Ren/ds) 'm, '=2.6 BeV.
The arrow marks the position of the p. The dashed curve is a
pl.ot of -', n for the same kernel, but with e (0) =0.0 and y =0.2. For
large s, both the real and imaginary parts of the full and dashed
curves are parallel, verifying the asymptotic solution for the
trajectory which predicts a slope proportional to &.

One of the trajectories in Fig. 4(a) is calculated with
this kernel. The asymptotic behavior of the trajectories
is unmodi6ed. If the exchanged mass is small, a dip is
introduced into the real part of the trajectory before
the asymptotic rise begins.

The functional form of E (7) in (25) is sufjciently
simple to enable us to analyze the asymptotic behavior
of the trajectory analytically. As n and s become large
along a trajectory, both (12) and (16) become equal to

62~a ~3/2(q2)a+i/2—e
—'7&'(i+ tanm. n) . (27)

2P (n+ 3 ) (/i2+q2)1/2

We discovered this asymptotic limit numerically, but
presumably it can be established analytically. YVhen n
and s both become large, (27) takes on the form

jectories in Fig. 4(b) has n(0) = 2 and Ren(30) =1 in an
attempt to match the p trajectory in a theory where
s=4 is the two-pion threshold. All such trajectories
take on the asymptotic form (30). Moreover, if the
asymptotic dominance of the on-mass-shell term in (12)
depends on the exponential nature of E (7) and is not
affected either by direct form factors or by multiplica-
tive factors of r, then (29) holds for all kernels propor-
tional to e 7', since form factors on the mass shell are
constants and (29) was independent of any power be-
havior in s. Thus, (30) appears to be a, universal asymp-
totic trajectory for a large class of interactions. The
linear s dependence of the trajectory is a result of the
calculation and is not assumed as ioput,

tA"e have calculated trajectories with a superposition
of kernels containing different r dependence. It is
obvious that if pure single-particle exchange is added
to any of the exponentially damped kernels discussed
here, the trajectory will start at o.= —1, rather than
n= —~. We also 6nd that if we add (21) and (25), the
behavior of the trajectory is characteristic of (21) even
in the region above threshold. Ke conclude, therefore,
that trajectories which rise smoothly from —~ to + ~
as s increases are possible for energy-independent inter-
actions if all terms are proportional to e &'e with P& 1.
Moreover, if /=1, the trajectory is asymptotically
linear with a slope and direction which are independent
of the detailed y dependence of the interaction.

IV. ENERGY-DEPENDENT INTERACTIONS
AND SUPERPOSITION MODELS

iW' s~
~ [1+in (y//4) ]—Vst2

&2o. o.
(28)

In Sec. III we considered interaction kernels which
were energy independent, except in so far as direct form
factors introduce an energy dependence. Although it is
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possible to obtain rising trajectories in such theories,
the trajectories are not of narrow width in the sense that
Imn and Imn/(d Ren/ds) are small. Previous work on
rising trajectories in potential theory has involved
energy-dependent potentials. ""The strength of the
coupling increases with energy in order to overcome
the effect of the angular momentum barrier. Within the
framework of our model, we can treat the relativistic
equivalent of energy-dependent potentials. However,
we have to be careful in interpreting our results. In I
we found that our basic method of calculating Regge
trajectories was qualitatively correct for strong cou-
pling, but the quantitative error increased with the
coupling strength.

An example of a physically motivated, energy-de-
pendent interaction is Regge-pole exchange,

(31)

3.6-

2.0

0.4

64-

5.2

2l
S
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0.00 20
I

40 60 80 lOO

Pro. 5. Trajectories calculated from Regge-pole exchange (31).
Both sets of curves are rising, but are not of narrow width. The
solid curve has y'=0. 1, no ——0.5, and e'=0.02 in order to match
the exchanged trajectory to the observed P trajectory. The dashed
curve is calculated from an exchanged trajectory with the same
intercept but 0.'=0.1 and the residue parameter y'=0.2.
IV. Barger, Rev. Mod. Phys. 40, 129 (1968).
9 R. J. N. Phillips and W. Rarita, Phys. Rev. Letters 15, 807

(1965).

In the absence of a signature factor, (31) represents an
exchange-degenerate pair of Regge poles."Since we use
(31) in the region I&0 or r= —f)0, we suppress the
poles that occur when a(r) crosses a positive integer.
If we make the conventional choice u(v)=crs cr T,

p(r) =G'e &" and so= (u') ''s then (31) takes on the
form of (24), and K (r) is given by (25), with an energy-
dependent y=y'+n' in(s/ss). In Fig. 5 are shown the
rising trajectories generated by this simple model of
Regge-pole exchange. Clearly (31) is valid only for s
substantially above threshold and cannot be used to
calculate trajectories which rise smoothly from s=—00 .
In fact, this is a general difhculty with energy-depend-
ent potentials. They describe the dominant part of the
dynamics at high energy, but some other mechanism is
more important at lower energies.

0.0- '

2l
S

I xo. 6. Trajectories calculated from energy-dependent coupling
constants shown as a function of s. In (a) the coupling constants
are proportional to s, the maximum power that is allowed by the
Froissart bound. Both the solid curve calculated from the P-de-
pendent kernel (23) (If =0.75) and the dashed curve calculated
from the Bessel-function kernel (21) turn over. In (b) the coupling
constant is proportional to s'; otherwise all parameters are the
same. The trajectories are now rising.

Given the close relation between (31) and (25), it is
not surprising that the trajectories are rising. More
interesting is the observation that the analysis on the
asymptotic form of the trajectory function can be re-
peated for (31). The on-mass-shell, 8-function part of
the integral dominates the integral in (12) as shoo.
The result is that 0. Ee@, where A=as lns, and 8 and
a are determined by (29). In other words, the asymp-
totic trajectory is not of narrow width for Regge-pole
exchange, and it is not a linear function of s. This result
is independent of the choice of 0.0.

Proceeding in the spirit of Sec. III, we investigate
the effect of allowing the coupling constant in the
energy-independent models to grow as a power of the
energy. The physical basis of such an assumption is
obscure compared to that of choosing Regge-pole ex-
change, but it might be a way of incorporating spin
effects. Thus, we multiply (22) by s& and calculate tra-
jectories in the large-s limit. The results are shown in
Fig. 6. E (r) is given by (19) with either (20) or (22)
for F(r). For rf large enough, the trajectories do appear
to rise. However, these large values of q& j. constitute
a violation of the Froissart bound. " If the coupling
constant is proportional to s&, the Eth generalized
ladder diagram approximation to the full scattering
amplitude is proportional to s~~+' ~ up to powers of
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FIG. 7. EGect of including direct form factors illustrated in three
cases where the kernel is single-particle exchange with form factors,
The form-factor singularities appear at s=16, where the elastic
threshold is at s=4. Curves 1 and 3 combine the kernel (23)
with the form factor (22). Both have X = 2 and 8 =0, while 1 has
p=0.25 and 3 has /8=0. 7S. Curve 2 combines the modiGed-
Besse!-function form factor (20) with the kernel (21) (X=1).
p =1.0 for all curves. If the form factors obey the Jaffe bound (1
and 2), the real part of the trajectory turns over as a function of s.
The real part of 3 is rising; and although it is now shown, the
imaginary part does not rise as fast as the real part. If the dif-
6culties with the Froissart bound were overcome, this trajectory
would be a candidate for a narrow-width rising trajectory.

ins. If 2/)1, A(s, r) is unbounded term by term as
s-+~, and the Froissart bound appears to be grossly
violated. ' Hence, our result says that rising trajectories
are not possible with energy-dependent coupling con-
stants unless the full scattering amplitude generated
by this same dynamical interaction violates the
Froissart bound.

Although we have used form factors for particle ex-
change, we have yet to discuss direct form factors. If
we write E (r) =K '(r)F(gr')F(g2')F(/ts')F(/t4') in order
to display the explicit dependence on the direct forxn

factors, the Blankenbecler-Sugar approximation" (16)
becomes

"k'+'dktE~'(k') ~F(k' —E') ~'g'X,(16')
(k2+~2) 1/2 (k2 ~2)

where s=4E' and the absolute square of the form
factor, ~F(k' —E') ~', indicates how we continue past
the singularities of the form factor. We always choose

"These statements on the violation of the Froissart bound are
based on a term-by-term analysis of the series representation of
the scattering amplitude A(s, r) in the limit s~~. A careful
analysis of ps 6eld-theory ladder diagrams shows that the ¹h
term in the series has the form ( s) ~fs/(r), f~(r) &0. S—ince the
terms alternate in sign, it is possible that the series sums to a
hounded function. However, the dependence of fs/(e) on N and r
is very complicated, and we consider it very unlikely that the sum
of the series is bounded. It is a point that merits a more detailed
investigation.

the direct form factors F(F42) to have the same func-
tional form as the exchange form factor F(r). A direct
form factor introduces a strong energy dependence, but
a dependence which is smooth in the sense that it is
well defined for all s, unlike the previous cases. In
Fig. 7, we see the effect of introducing direct form
factors. In the previous section, we found that form
factors proportional to e 'r' /', with p&1, lead to tra-
jectories that turn over. If P &—'„ the direct form factors
do not alter this conclusion. On the other hand, if P) —',,
the introduction of direct form factors leads to rising
trajectories; however, the Jaffe bound is violated. "
These results are not surprising when we consider that
when Z2 is such that the integral in (16') overlaps a por-
tion of the form-factor cut, z~= (—z)/'(cossrp+i sinsrp),
z=k' F2+As. W—e adjust /l. so that the branch point
z=o, E.'=k'+As, occurs at an inelastic threshold. If
p&2, then cossrp)0, and the energy dependence from
e ~'~ is exponentially damped"; we do not expect the
direct form factor to produce rising trajectories. If
P)-.', we have the equivalent of an exponentially grow-
ing coupling constant, and the trajectory rises. It even
appears to be of narrow width. However, as pointed
out above, the Froissart bound2 will be violated in the
limit s-++oo. If P=2, the trajectory turns over,
although not as rapidly as if there were no direct form
factor present. In every case, the direct form factor
increases the slope of the trajectory below threshold
as expected from the increased energy dependence.
All the trajectories have 42(—4o )= —4o in the presence
of direct form factors if IC (r) is exponentially damped.

Another possible approach to generating rising tra-
jectories is through the use of coupled channels. The
effect of a two-particle threshold is such as to k.eep the
trajectory rising until s reaches threshold. Thus a
superposition of suitably chosen thresholds with appro-
priate coupling constants might force the trajectories
to continue rising. Within the framework of the model
used here, the particles in the intermediate states must
have zero spin. A model of this type was brieQy in-
vestigated in I for elementary-particle exchange with
two or three thresholds, and the results were not en-
couraging. Multiple thresholds enter the model as a
sum over propagators of the intermediate states in the
integral equation in (8). If this effect is to lead to
infinitely rising trajectories, there must be an infinite
number of terms in the sum. Since the spectrum of inter-
mediate states is arbitrary, we Diake the smoothest
possible assumption and replace the infinite sum by an
integral over a continuous distribution of two-particle,
equal-mass states. In the Hlankenbecler-Sugar approxi-
mation" (16), this involves the replacement of the
propagator factor

P(k2) =
(k2+p2)1/2(ks —2S+p2)

"The argument here is a simpli6ed version of that given by
Martin in Ref. 17.
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by

P(k') =
ao Gs(+2) o|+2

s ($2+ps)l/2($2 t @+~2)
(32)

5.0-

2.0-
where G'(/i') is the coupling to the intermediate state of
particles with mass p. The lowest threshold is at s= 4po'.
If the integral in (32) is to converge, there is a limit to
the rate at which the coupling G'(/i') can increase with
mass. We make the simplest possible choice, G'(/is)
=G'//ass, so that we can perform the integral to obtain

I.O-

2G2 - ( 2(P+p s)1/2+Qs
P(ks) = in~

y,'gs k 2 (h'+yP)'&' —gs )
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Fro. 8. Trajectories from the model of a continuous superposi-
tion of equal-mass intermediate states plotted as a function of s.
The full curve uses (21) for the kernel, while the dashed curve is
calculated with (25). Although the trajectories turn over the
imaginary part of the trajectory function has zero slope at s =4,
the lowest threshold, in contrast to the trajectories in Figs. 1 and 3.

Then using first (21) and then (25) for K (r), we obtain
the trajectories in Fig. 8. The trajectories do not rise,
even when E (r) is given by (25). One noticeable effect,
however, is that the rapid threshold rise of Imo. as a
function of s seen in Figs. 1—3 is replaced by a more
gradual rise. This is a result of the fact that the im-

aginary part of (33) above threshold is no longer a 8

function. The discontinuity in s above threshold in-

volves an integral over a Qnite region. The effect on the
slope of Imn at s=0 is analogous to what would be ex-

pected at a three-particle threshold. The absence of the
8-function discontinuity also explains why E(r) =e 'r"

does not produce a rising trajectory. The right-hand
side of (27) becomes an integral with a corresponding
weaker dependence on s. Thus, subject to the con-
straint that the superposition converges, an infinite
set of two-particle spinless thresholds does not lead to
rising trajectories for any interaction.

FIG. 9. Trajectories calculated from the model of three-particle
intermediate states shown as a function of s. Threshold is at
s=9. The full curve is generated by the pure exponential kernel
(25) with y =1.0 and n (0) =0.0. The dashed curve has the Bessel-
function kernel (21) with y=1.0, X=1, and n(1.5) =0.0. The
trajectories turn over, but the imaginary parts start with zero
slope at threshold.

Finally we investigate a model of a three-particle
threshold treated as a two-particle threshold where one
of the particles has variable mass. The effective propa-
gator in this case is given in Appendix 3, and the re-
sulting trajectories appear in Fig. 9. Again they turn
over, but they show the same decrease in the slope of
Imo. that was seen in the continuous-threshold model.
The ultimate model of a rising trajectory will un-
doubtedly require a much more careful treatment of
three-particle states than the one developed here.

V. CONCLUSION

YVe have investigated the general problem of finding
a fully relativistic dynamical model which leads to
Regge trajectories which are infinitely falling, n= —~
as s —& —eo, and infinitely rising, Ren =+ ao as
s —+ + ao. We would like such trajectories, if they rise,
to be of narrow width. Our approach has been to use
a phenomenological field theory in which a basic inter-
action is unitarized by summing generalized ladder
diagrams. We And that it is possible to construct models
for infinitely falling trajectories that do not violate any
of our strongly held beliefs about the nature of the
world. In particular, there appears to be a very natural
connection between the concept of infinitely composite
particles and falling trajectories. The composite nature
of particles suggests that standard sirigle-particle ex-
change should be modified by form factors which are
exponentially damped in the spacelike region. "In fact,
any interaction which is an exponentially damped
function of the momentum transfer leads to falling
trajectories. Of course, the relevance of this analysis to
the real world depends on a knowledge of the nature
of other singularities in the complex angular momentum
plane which could interact with the falling trajectories.
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The problem of cuts in such theories obviously deserves
consideration.

The strongest statement we can make about rising
trajectories is that they probably do not exist; but if
they do, something has to give. In other words, our
results are consistent with the conclusion reached by
Khuri" and modified by Jones and Teplitz. '9 If the in-
teraction is independent of the energy, the trajectory
will not rise unless the kernel, viewed a,s a form factor,
violates the Jaffe bound" which states that the maxi-
mum rate at which a form factor can vanish is e ~'~

with P( —,. We find rising trajectories only if P&1.
The Jaffe bound is based on either field-theoretic
arguments or the existence of dispersion relations with
a finite number of subtractions. '7 It would not surprise
us if this bound is violated in the presence of rising
trajectories. Moreover, there is little direct experi-
ment. al evidence on form factors for purely hadronic
processes. However, it is worth mentioning that if we
view our generalized ladder diagrams in the crossed
channel physical region, t ~, s&0, violation of the
Jaffe bound constitutes violation of the Froissart
bound. ' Fortunately our integral equation does not
probe this region, and it is conceivable that there are
other contributions to a complete theory that could
cancel the large-t divergence but which do not con-
tribute to the binding of Regge poles.

Such a canceHation seems inconceivable in those
theories which produce rising trajectories by introducing

'

direct energy dependence. If the coupling constant is
energy dependent, not only are there problems as
s —+ —~, but we find that the energy dependence
necessary for rising trajectories is such that the sum
of generalized ladder diagrams violates the Froissart
bound. " This conclusion is consistent, qualitatively
at least, with that reached by Trivedi" and by Tikto-
polous" in potential theory. The energy dependence
introduced by direct form factors leads to an even
more gross violation of the Froissart bound. Since this
bound on the scattering amplitude fo1lows from more
general considerations than the Jaffe bound" on form
factors, and since there is relevant experimental in-
formation on hadronic cross sections, we do not con-
sider seriously theories that lead to scattering ampli-
tudes which increase faster than s& with rj&1. There
is, of course, the possibility of cancellation against
other contributions. However, our integral equation
probes this kinematic region, and we prefer not to
invoke unknown mechanisms for the necessary drastic
cancellations.

All our statements in this conclusion are subject, of
course, to the caveats made in the introduction about
the type of theories we are willing and able to discuss.

Finally we note that the rising trajectories we do
6nd, although not of narrow width, are asymptotically
linear. A basic interaction of the form Z(r) =e &' is
hard to interpret physically, except perhaps as the zero

spin equivalent to the exchange of a fixed Pomeranchuk
trajectory in a theory with spin. (Spin in field-theory
models has the effect of introducing powers of s and
shifting singularities to the right in the complex angular
momentum plane. ") On the other hand, the Regge-pole
amplitude exp) —y7 —(n'r —no) 1ns/so] commonly ap-
pears in the literature" and presumably represents the
sum of ladders in the t channel. In the 7 —+ —~ limit
this amplitude diverges. There must be terms which
cancel the singularity. In any case this theory has at
least a, veneer of respectability. Since these theories are
the only relativistic models of rising trajectories, it is
worthwhile investigating them in more detail. In par-
ticular, is the currently popular concept of a sequence
of parallel secondary trajectories supported by this
model) Dork is in progress on this question.
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APPENDIX A: CORRECTIONS TO SEPARABLE
APPROXIMATIONS

The basic rationale behind the particular separable
approximation used here for the kernel E((p—k)') is
that the approximation should become exact in the
limit in which either p or k approach zero, yet retain the
large-p or -k properties of the exact kernel necessary to
make the integral converge. '- The pxoblem is to calculate
higher-order corrections to the first-rank approximation
in order to estimate the validity of the approximation.
For simplicity, we work with a kernel in one dimension,
and then generalize the results to the case where p and
k are vectors in X& dimensions. The correction to the
first-rank approximation is defined by

Z(p, k) = a(p, k) —It (p,O)lt (O,k)/Z(O, O), (A&)

where E(p,k) is an arbitrary, symmetric l.ernel. We
denote the first approximation to h(p, k) by 6'(p, k).
Clearly 5'(p, k) is a separable, symmetric function of p
and k which vanishes as p and k separately go to zero.
Hence, we write

~'(p, k) =kpg(p)g(k)
=E(p,k) —E(p,o)K (O,k)/It (0,0), (A2)

where g(o)&0. If we expand both sides of (A2) in
powers of k and equate terms of order k, we 6nd

1 8 Z(p, o) 8
g(p) = —Z(p, k) — —Z(o,k), (A3)

pg(0) Bk Z(0,0) Bk i,=o

"See Ref. 15, Chap. 3, p. 170.



RISE A i' D FALL OF RELATIVISTIC TRAJECTORIES 2499

and (A3) can, in turn, be used to evaluate g(0): then (A2) is replaced by

8 t9

g(0)'= —K—(p,k)
Bp Bk

1 8 t9—K (p,0)—E(O,k)
E(0,0) Bp Bk —k=0) y=o

~ (p,k) =k pg(k')g(p)
=K((p—k)') —E (p')E (k')/K (0), (A5)

since p k is the only scalar function of order p and k.
Expanding both sides of (A5) to order k and equating
coefficients, we obtain

Together, (A3) and (A4) determine Ai(p, k). The pro-
cedure is easily generalized to evaluate

A" (p,k) =p"k"g„(p)g. (k) .

g(p)g(0) =--2K (p), (A6)

A'(k p) = —2k pK'(p')K&(k')/IC'(0) (A7)

where K'(x)=dK(x)/dx. We also need A)(p, k) which
must have the form

The extension of this procedure to E-dimensional A2 (/ p) p)k)g (p2)g (k2)+ (p .k) 2f(p2)f(k2) (Ag)
integral equations is straightforward. In particular, if
the kernel is a function of the scalar quantity (p —k)', Repeating our procedure, we find

$+& (p2)K(0) K (p2)E& (0)j&LK& (k2)K (0) K (k2)K& (0)j K« (p2)E« (/2)
A'(k, )= +2(p.k)'

K'(0)EK (0)K"(0)—K'(0)'1 E"(0)
(A9)

The angular integrations involved in an 1V-dimensional integration suppress terms proportional to (p.k) ~, so
that A'(p, k) and the part of LV(p, k) proportional to p'k', denoted by 5'(p, k), are of the same order when used
to calculate Regge trajectories. Thus, we refer to d, '(p,k)+A'(p, k) as the first-order correction to the simple
separable approximation. This prescription is consistent with that used in I to obtain the higher-order corrections
for single-particle exchange and is equivalent to the statement that the order is identified with the highest order
of the derivative of K(p') that appears in a, given term. To generate the second-order approximation to (12),
we substitute

K-(p')E«(k') E-+i(p')E«+i(k')
E-((p-k)') = +2k pE (0) E.„i(0)

tE-+ (P')K-(o) —K-(P')K- (0)3C:K-+i(k')K-(0)—K.(k')E.+,(0)j
(A10)

K.(0)LE-(0)K-+)(0)—K-+i(0)'3

into the integral equation (8). After a moderate amount
of algebra, we find the poles of V(n, s,p) are given by
(13) and (14). We have used (10) to relate K '(p') to
K' +i(p'). Moreover, we have made use of the fact that
all integrals are even functions of the 2n+3 coordinates
of the vector k, so that only the kopo term in k.p
survives. If the scattering particles have equal mass,
the integrals are even in ko as well; and the matrix D
reduces to 2)&2. Finally we mention that the second-
approximation terms which are proportional to p'/. '
vanish for the pure exponential kernel (26).

B(k',w) =
„p(ko+)E)'+k'+ p'gt (ko —ZE)'+k'+w')

( ~ )
(81)

Z„I,p(Z„+Z.) 4Zj—
where E„'=k'+/i' and I'&' '=k'+w' ff the svstem with
effective mass w is composed of two particles, each of
mass p, then the three-particle approximation we con-.
sider is defined by the superposition

APPENDIX 8: THREE-PARTICLE INSERTION

A model of a three-particle intermediate state can
be constructed if we consider that two of the three
particles are correlated to form an eRective variable
mass system with zero spin. We apply the Blanken-
becler-Sugar approximation" to a system with particles
of mass p and m, where m is continuous, and find

P) (k') =-'G')r p (w) (w' —4p')'"8 (k' w) dw (82)

where the weight function p(w) modulates the two-
particle phase-space factor —,')r(w' —4p')"- and P)(k') is
the propagator factor analogous to E(k') defined in
(32). If

p (w) p2/w (w2 F2)1/2
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the integral becomes

oe EdE
Es(k') =-;G'sr- (B3).+ ~ (E'—s)E(E—E.)'—k'3

where s=4E'. This choice of p(w) enables us to evaluate the integral and obtain

G'x'p' E —k 1 E„+k 1
Ps(k') = —1n(Es„+k) — —ln(Es„—k)—

SE (E —k)' —s k (E„+k)' sk — (E„—Qs)' —k'

&&»(IE.+Es.—V"I)— »(E,+Es.+V")+
(E„+Qs)'—k'

4t'scenes (E—„+Es„)'j
(B4)

(E„—Qs)' —k'

To obtain Regge trajectories in this approximation, we replace the factor srG'iL2(k'+tt')'"(k' —q')i by Ps(k')
in (16).
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Diagonalization of the Natural ParitY in the Multiperipheral Equations*
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The crossed partial-wave analysis of the multiperipheral equations is extended to include the natural-
parity quantum number. At nonvanishing momentum transfer, a constraint imposed by reQection symmetry
on the two-Reggeon —particle vertex function is shown to diagonalize a discrete index z, which therefore
assumes the meaning of a parity index. At vanishing momentum transfer, the result is a selection rule for
the vertex function between input Regge poles and an output Regge pole of Toiler quantum number 3f=0.
It turns out that, to leading"order in the asymptotic expansion in the subenergies, the product of the three
natural parities at the vertex has to be positive. The I=0 limit and some possible implications of this selec-
tion rule are also discussed.

the resulting equations are rather complicated in the
multi-Regge-pole case, and their physical basis is being
questioned, " they still provide a bootstrap model for
arbitrary spin conigurations and a reasonable moti-
vation for factorized production amplitudes. If the
Regge bootstrap is to be extended to lower-ranking
trajectories, the use of multi-Regge-pole models wilL be
useful to describe such nonvacuum quantum numbers
as unnatural parity or Toiler's quantum number 3I&0.

The purpose of this paper is to fill a gap left by the
previous group-theoretical analysis, by presenting a
diagonalization of the crossed-channel natural parity

I. INTRODUCTION

~ 'HE crossed partial-wave analysis' 4 of the multi-
peripheral equations' 8 has provided a mathe-

matical framework for the Regge bootstrap. '3 Though
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